DARPA’s Injectable Foam Blocks Internal Bleeding

Despite their best efforts to stabilize abdominal wounds sustained on the battlefield, military first-responders have few options when it comes to stanching internal bleeding caused by, for example, gunshots or explosive fragments.

The Defense Advanced Research Projects Agency (DARPA) says it is studying a new type of injectable foam that molds to organs and slows hemorrhaging. This could provide field medics with a way to buy more time for soldiers en route to medical treatment facilities.

The polyurethane foam begins as two liquids stored separately and injected together into the abdominal cavity. One liquid is a polyol, a type of alcohol. The other is made of isocyanates, a family of highly reactive chemicals widely used in the manufacture of flexible and rigid foams.

Within about one minute after a medic inserts the liquids at the midline—near the belly button—the mixture expands to nearly 30 times its original volume and then turns solid. It slows or halts hemorrhaging by sealing wounded tissues. Once the patient can get to intensive care, doctors would remove the solid mass and then perform surgery to permanently stop any bleeding.

“Initial battlefield care is provided in austere, often hostile conditions by field medics,” says Brian Holloway, program manager for DARPA’s Wound Stasis System program, which was launched in 2010 to find a technological solution to control internal hemorrhaging. The foam, made by Arsenal Medical, Inc., indiscriminately blocks the sources of the bleeding, almost like a scorched-earth campaign against blood loss.

“We’ve been waiting for this,” says Donald Jenkins, trauma director at Saint Mary’s Hospital in Rochester, Minn., and a 24-year Air Force veteran who has spent more than 700 days in combat zones, including in Afghanistan and Iraq. When asked how often he has seen soldiers suffer from abdominal hemorrhaging caused by explosives or gunshot wounds, he pauses and says, “Too many times.”

Read More: Here


July 2017
« Jun