Health

Omega-3 Removes ADHD symptoms

omega3

Researchers have observed the behaviour of rats and have analyzed biochemical processes in their brains.

The results show a clear improvement in ADHD-related behaviour from supplements of omega-3 fatty acids, as well as a faster turnover of the signal substances dopamine, serotonin and glutamate in the nervous system.

There are, however, clear sex differences: a better effect from omega-3 fatty acids is achieved in male rats than in female.

Unknown biology behind ADHD

Currently the psychiatric diagnosis ADHD (Attention Deficit/Hyperactivity Disorder) is purely based on behavioural criteria, while the molecular genetic background for the illness is largely unknown.

The new findings indicate that ADHD has a biological component and that the intake of omega-3 may influence ADHD symptoms.

“In some research environments it is controversial to suggest that ADHD has something to do with biology. But we have without a doubt found molecular changes in the brain after rats with ADHD were given omega-3,” says Ivar Walaas, Professor of Biochemistry.

The fact that omega-3 can reduce ADHD behaviour in rats has also been indicated in previous international studies.

What is unique about the study in question is a multidisciplinarity that has not previously been seen, with contributions from behavioural science in medicine as well as from psychology, nutritional science and biochemistry.

Hyperactive rats

The rats used in the study are called SHR rats – spontaneously hypertensive rats. Although this is primarily a common type of rat, random mutations in their genes have resulted in genetic damage that produces high blood pressure. It is therefore first and foremost blood-pressure researchers who have so far been interested in these rats.

However, the rats do not suffer from high blood pressure until they have reached puberty. Before that age they present totally different symptoms – namely hyperactivity, poor ability to concentrate and impulsiveness.

It is exactly these three criteria that form the basis for making the ADHD diagnosis in humans. The animals also react to Ritalin, the central nervous system stimulant, in the same way as humans with ADHD: the hyperactive responses are stabilized. SHR rats are therefore increasingly used in research as a model for ADHD.

Supplements as early as the foetal stage

Researchers believe that omega-3 can have an effect from the very beginning of life. Omega-3 was therefore added to the food given to mother rats before they were impregnated, and this continued throughout their entire pregnancy and while they fed their young.

The baby rats were also given omega-3 in their own food after they were separated from their mother at the age of 20 days. Another group of mother rats were given food that did not have omega-3 added, thus creating a control group of SHR offspring that had not been given these fatty acids at the foetal stage or later.

The researchers started to analyze the behaviour of the offspring some days after they were separated from the mother. They studied behaviour driven by reward as well as spontaneous behaviour.

Read More: Here