Supertrees- The Amazonian Giant that Helps the Rainforest Make its Own Rain

December 26, 2019

The Brazil nut tree plays a critical role in the global climate and weather across South America. Deforestation is putting it all at risk.

The white mist is thick and creamy, and it envelops me as I plod up the steep stairs of the exposed steel tower. In this swirling fog, it’s hard to tell how high I am and how much further I have left to go.

Wearing a climbing harness that’s a little too snug and secured by a cable that looks a little too thin, I unclip my carabiner from the railing and attach it to the next one up. The diamond plate flexes under my weight as I move toward the next set of steps. I can’t see the ground, but I can see that the gaps between steps on the stairs are wide enough for my boot to easily slip between them.

I have inadvertently ended up at the front of our little group, far ahead of everyone else who set out on this climb. The scientist guiding us suggested we get to the top of the tower by sunrise, which meant waking up at 4 am and scaling the structure in the dim light of early morning. Alone in the clouds, I pause at a landing marked “200 meters,” feeling the whole tower sway in the wind. It’s silent and still, save for a breeze roiling wisps of fog between the steel braces of the tower.

I am here in the jungle, a half-day’s journey by pickup truck and boat from the nearest major city, two-thirds of the way up the Amazon Tall Tower Observatory, the tallest structure in South America, to experience a force that defines the Amazon rainforest as we know it.

The hundreds of billions of trees, spread over the 2.1 million square miles of forest below, channel a colossal volume of water into the air every day. Alongside that water, they emit an elixir of chemicals that react to form particles, inducing that moisture to fall back out of the sky.

The rainforest, amazingly, makes about half of its own rain.

In the early morning hours, a huge upward torrent of fog emanates from the treetops, spreading so thick that it’s impossible to see more than a few feet in any direction. This moisture rises into the sky and condenses as it cools, forming clouds (scientists call this the evapotranspiration process). When it meets dust and particles, it forms drops that create rainfall.

Read More

0 comment