The Chicken Experiment That Shook the World

October 10, 2017

In all the arguments that erupted afterward, everyone agreed on this: The chickens gained weight.

In 1942, a new antibiotic called penicillin saved the lives of more than 100 victims of a Boston fire. Drug companies raced to develop their own versions.

It was Christmas Day, 1948. The streets of Pearl River, New York, a small town 20 miles northwest of Manhattan on the New Jersey border, were very quiet, and the halls of Lederle Laboratories even more so. There was a skeleton crew at the 500-acre campus: the minimum necessary number of laboratory staff nipping in and out to monitor equipment and make sure the experimental animals were fed.

Thomas Jukes did not plan to spend much time there himself. He had told his lab assistant to take the holiday off. All he needed was to slip into the animal colony, corner the 133 juvenile chickens that made up his experiment, and weigh them. He expected that it would not take long.

He probably did not expect to change the world.

Jukes was British, slender and dark-haired, with alert eyes behind oversized glasses: an energetic self-made man who had left home at age 17, emigrated to Canada, and worked on a farm and in factories in Detroit to amass enough money for college. He had earned a degree at Ontario Agriculture College — sleeping, at one point, on a cot in the poultry building — and a Ph.D. in biochemistry at the University of Toronto’s medical school, studying the immune systems of chickens and ducks. In 1933, he took a postdoctoral appointment at the University of California, Berkeley, and wound up at its College of Agriculture, where he accomplished notable work, identifying which vitamins had to be added to chicken feed to allow birds to thrive on a manufactured diet.

In the 1930s, that was a crucial question. Until World War I, almost every farmer had kept a few hens to produce eggs and had eaten the hens when they stopped laying. Now, though, chicken meat and eggs were becoming a crop, a farm’s reason for being. Instead of a few at a time, chickens were being raised by the thousands, and instead of wandering around a barnyard, they were sequestered indoors, unable to reach the grains and grubs they would have scratched up from the ground. They needed synthetic nutrition, and the poultry industry needed a parallel industry of experts to supply it.

Jukes became one of those experts, and Lederle, the company that recruited him from California with the promise of a lab and staff, was becoming a leader in poultry science. Lederle was not an agricultural company; it was a pharmaceutical company, one of the first manufacturers of antibiotics.

Jukes joined the company in 1942, the year the new drug called penicillin saved the lives of more than 100 victims of the Cocoanut Grove nightclub fire in Boston by preventing infections from taking hold in severe burns. That was enough proof of the power of this mold-based antibiotic for the U.S. government to invest in its production and send millions of doses out onto the battlefields of World War II, saving untold thousands with a speed that seemed miraculous.

Penicillin’s success ignited a hunger for additional antibiotics — and for the profit these new drugs could bring. Pharmaceutical companies sent sterile sample tubes around the world, begging missionaries and soldiers to spoon up and send home any mold or dirt that looked promising. Lederle’s chief pathologist, Benjamin Duggar, asked a former colleague at the University of Missouri to send him random scoops of dirt from the campus. One tube, dug from a field where the agricultural school grew varieties of forage grass, contained a bacterium that exuded a golden-yellow chemical. In tests, the compound killed a wide array of disease bacteria — more than penicillin could manage, and different ones from those that streptomycin could kill.

American Cyanamid Company, Lederle’s parent corporation, jubilantly filed for a patent in February 1948. In a nod to the compound’s color— and maybe to the income he hoped would flow from it — Duggar dubbed the fungus Streptomyces aureofaciens, “gold-making.” He called the compound Aureomycin. Later it would be known as chlortetracycline, the first of the entire family of tetracycline drugs.

Jukes was not part of Lederle’s antibiotic effort; he had been hired to work on nutrition. But he was still interested in what chickens needed to eat to thrive in confinement — and by an accident of history, that question was more important than ever. World War II had spurred such demand for protein that chicken production almost tripled. But when the war ended, the poultry market collapsed and producers struggled for ways to cut costs. En masse, they switched their birds’ diet from vitamin-rich fishmeal to much cheaper soybeans. Chickens did not do well on soybeans, though. They grew slowly; their eggs did not hatch. Even when vitamins were added to their feed, as Jukes had learned to do in his first job, the birds did not thrive. People talked about adding a nutritious boost, an “animal protein factor.”

Then Merck & Company, a Lederle rival, discovered that the brewing process for making its own antibiotic, streptomycin, produced a compound that made chickens do better, even when they were fed the small amounts of protein now present in conventional feed. Merck’s scientists identified the byproduct as vitamin B12.

Jukes wondered if Lederle’s Aureomycin, a distant relative of the bacteria species the Merck scientists used, could perform the same trick. That was what brought him to his office on Christmas morning, on a mild, dry day with just a dusting of snow. A few weeks earlier, he had set up an experiment to test whether Lederle possessed an animal protein factor of its own. Today he would find out.

He had chosen a small group of 6-month-old hens and roosters from the birds the company raised to use in research. He fed them a specially mixed diet, low in nutrients so the chicks would be feeble; that way, it would be easier to distinguish the effect of any additives. When the hens laid eggs, he hatched the chicks in an incubator, divided them into groups of 12, and sequestered one dozen to keep as a control group. Those birds got the same deficient diet as their parents. The other groups got different doses of supplements; one of those groups was fed tiny portions of the mash, or growth medium, that Aureomycin had been brewed in.

Read More

0 comment